IDEAlliance Off-Press Proof Application Data Sheet

ORIS Digital Proofing System™ using ORIS PearlPROOF™ Commercial for Canon x100 Series printers

ORIS Digital Proofing System™ using ORIS PearlPROOF™ Commercial for Canon x100 Series printers

SWOP® Grade 3 Off-Press Proof Application Data Sheet

The IDEAlliance Print Properties Working Group has established a certification process for off-press proofs as input material to publications. In accordance with this process: “The appearance of a hard copy or monitor proof used in this application must have the ability to closely match specific CGATS or other documented characterization data sets within outlined tolerances. See further explanations and recommendations outlined on www.swop.org or www.gracol.org.

The following information is intended to assist producers and consumers in the use of vendor specified proofing materials in an off-press proof application:

I. Manufacturer
CGS Publishing Technologies International, LLC.
100 North Sixth Street, Suite 308B
Minneapolis, MN 55403
Telephone +1 (612) 870-0061
Fax +1 (612) 870-0063

II. Product
ORIS Digital Proofing System™ for Canon 5100, 6100, 8100 & 9100 printers consists of the ORIS Color Tuner™, Canon 12-color LUCIA ink sets and ORIS PearlPROOF™ Commercial (PSMC) paper.

III. Introduction
The Canon printer models listed in the above section (II) are digital ink-jet proofing systems. By utilizing Canon’s advanced printing technology, the combination of the FINE print head technology and the L-COA processor allow the Canon imagePROGRAF printers to produce vibrant, photo-realistic proofs at unprecedented speeds. This document contains CGS ORIS operating procedures for conformance to SWOP #3.

IV. Control Guide
IDEAlliance specifies a control guide such as an ISO 12647-7 Digital Control Strip 2007 be supplied on every off-press proof. As a minimum, any control guide used for proofing applications should contain solids for the primary process colors (YMCK), two-color overprints (RGB) and a three-color overprint (YMC), as well as a 25%, 50%, and 75% tint in stated line screen resolution of each of the primary process colors and 3-color gray patches. All control guides should be checked for accuracy of the original values. Use and interpretation of a control guide is the responsibility of the creator.
V. System Components
The following components and limited procedures shall be used with ORIS Digital Proofing System™ in order to achieve conformance with this Application Data Sheet.

Software: ORIS Color Tuner Pro software, ORIS Certified Proof for verification of ISO 12647-7 Digital Control Strip 2007

Measurement Devices: X-Rite i1 iSis for Calibration, X-Rite i1 Pro (non-UV) for ISO 12647-7 Digital Control Strip 2007

Setup Guide: Color Tuner Calibrate+ApplyMatch.pdf (SWOP) Contact CGS for guide.

VI. Finishing Procedures
Proofs should not be measured for 15 minutes to allow for ink dryback. No special Finishing requirements are needed for ORIS Digital Proofing System.

VII. Finished Proof Characteristics
A proof with the color characteristics referenced in Appendix 1 is to be expected when measured from the IDEAlliance ISO 12647-7 Digital Control Strip 2007 having been properly made to all the listed system components and finishing procedures.

Note: Three-color grays are comprised of Cyan, Magenta, Yellow: 75, 66, 66; 50, 40, 40; and 25, 19, 19 values.

X-Rite i1 Pro rev B. (Non-UV) was used to measure ISO 12647-7 Digital Control Strip 2007

(ORIS Certified Proof setup files and procedures available upon request)

VIII. Sample Proofs
CGS Publishing Technologies International, LLC. has supplied three (3) sets of hard copy proofs for retention that conform to this Application Data Sheet by an IDEAlliance certifying contractor.
Appendix 1

Characterization Data CIELab Values

IDEAlliance ISO 12647-7 Digital Control Strip 2007 for SWOP 2006 Coated #3

<table>
<thead>
<tr>
<th>Patch ID</th>
<th>CIELab Data</th>
<th>Maximum CIE ΔLab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L*</td>
<td>a*</td>
</tr>
<tr>
<td>A1</td>
<td>31.96</td>
<td>-21.01</td>
</tr>
<tr>
<td>A2</td>
<td>56.99</td>
<td>-37.23</td>
</tr>
<tr>
<td>A3</td>
<td>66.07</td>
<td>-27.13</td>
</tr>
<tr>
<td>A4</td>
<td>80.52</td>
<td>-11.80</td>
</tr>
<tr>
<td>A5</td>
<td>25.80</td>
<td>40.75</td>
</tr>
<tr>
<td>A6</td>
<td>47.84</td>
<td>72.08</td>
</tr>
<tr>
<td>A7</td>
<td>58.95</td>
<td>51.61</td>
</tr>
<tr>
<td>A8</td>
<td>78.03</td>
<td>20.64</td>
</tr>
<tr>
<td>A9</td>
<td>47.67</td>
<td>-4.29</td>
</tr>
<tr>
<td>A10</td>
<td>87.97</td>
<td>-5.03</td>
</tr>
<tr>
<td>A11</td>
<td>89.28</td>
<td>-5.09</td>
</tr>
<tr>
<td>A12</td>
<td>91.24</td>
<td>-2.93</td>
</tr>
<tr>
<td>A13</td>
<td>54.86</td>
<td>-51.51</td>
</tr>
<tr>
<td>A14</td>
<td>38.04</td>
<td>51.19</td>
</tr>
<tr>
<td>A15</td>
<td>69.74</td>
<td>23.44</td>
</tr>
<tr>
<td>A16</td>
<td>49.55</td>
<td>15.84</td>
</tr>
<tr>
<td>A17</td>
<td>40.89</td>
<td>33.29</td>
</tr>
<tr>
<td>A18</td>
<td>34.01</td>
<td>22.69</td>
</tr>
<tr>
<td>A19</td>
<td>52.24</td>
<td>-17.96</td>
</tr>
<tr>
<td>A20</td>
<td>36.91</td>
<td>-2.13</td>
</tr>
<tr>
<td>A21</td>
<td>90.46</td>
<td>-0.06</td>
</tr>
<tr>
<td>A22</td>
<td>85.69</td>
<td>-0.18</td>
</tr>
<tr>
<td>A23</td>
<td>75.49</td>
<td>-0.39</td>
</tr>
<tr>
<td>A24</td>
<td>58.21</td>
<td>-0.51</td>
</tr>
<tr>
<td>A25</td>
<td>39.28</td>
<td>-0.34</td>
</tr>
<tr>
<td>A26</td>
<td>26.88</td>
<td>-0.14</td>
</tr>
<tr>
<td>A27</td>
<td>18.06</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patch ID</th>
<th>CIELab Data</th>
<th>Maximum CIE ΔLab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L*</td>
<td>a*</td>
</tr>
<tr>
<td>B1</td>
<td>15.57</td>
<td>11.13</td>
</tr>
<tr>
<td>B2</td>
<td>26.85</td>
<td>18.10</td>
</tr>
<tr>
<td>B3</td>
<td>40.85</td>
<td>16.19</td>
</tr>
<tr>
<td>B4</td>
<td>67.49</td>
<td>7.60</td>
</tr>
<tr>
<td>B5</td>
<td>25.19</td>
<td>35.01</td>
</tr>
<tr>
<td>B6</td>
<td>46.86</td>
<td>66.21</td>
</tr>
<tr>
<td>B7</td>
<td>57.68</td>
<td>47.17</td>
</tr>
<tr>
<td>B8</td>
<td>77.94</td>
<td>18.06</td>
</tr>
<tr>
<td>B9</td>
<td>29.42</td>
<td>-36.88</td>
</tr>
<tr>
<td>B10</td>
<td>52.12</td>
<td>-64.75</td>
</tr>
<tr>
<td>B11</td>
<td>63.15</td>
<td>-41.26</td>
</tr>
<tr>
<td>B12</td>
<td>79.23</td>
<td>-15.72</td>
</tr>
<tr>
<td>B13</td>
<td>44.63</td>
<td>-16.62</td>
</tr>
<tr>
<td>B14</td>
<td>47.87</td>
<td>69.02</td>
</tr>
<tr>
<td>B15</td>
<td>72.78</td>
<td>-24.61</td>
</tr>
<tr>
<td>B16</td>
<td>68.56</td>
<td>20.02</td>
</tr>
<tr>
<td>B17</td>
<td>52.11</td>
<td>36.50</td>
</tr>
<tr>
<td>B18</td>
<td>40.29</td>
<td>32.11</td>
</tr>
<tr>
<td>B19</td>
<td>45.95</td>
<td>-26.09</td>
</tr>
<tr>
<td>B20</td>
<td>92.50</td>
<td>0.00</td>
</tr>
<tr>
<td>B21</td>
<td>90.08</td>
<td>-0.02</td>
</tr>
<tr>
<td>B22</td>
<td>84.59</td>
<td>-0.04</td>
</tr>
<tr>
<td>B23</td>
<td>73.54</td>
<td>-0.15</td>
</tr>
<tr>
<td>B24</td>
<td>56.29</td>
<td>-0.48</td>
</tr>
<tr>
<td>B25</td>
<td>39.80</td>
<td>-0.33</td>
</tr>
<tr>
<td>B26</td>
<td>24.79</td>
<td>0.22</td>
</tr>
<tr>
<td>B27</td>
<td>8.91</td>
<td>-0.43</td>
</tr>
</tbody>
</table>

Note: Color measurements comparing measured proof data to this reference data requires the use of a calibrated spectrophotometer.